Source code for honeybee_radiance_command.options.pcond

# coding: utf-8

from .optionbase import (
    OptionCollection,
    BoolOption,
    NumericOption,
    StringOption,
    IntegerOption,
    TupleOption,
    FileOption
)


[docs]class PcondOptions(OptionCollection): """pcond options. Also see: https://floyd.lbl.gov/radiance/man_html/pcond.1.html """ __slots__ = ( "_h", "_a", "_v", "_s", "_c", "_w", "_i", "_I", "_l", "_e", "_u", "_d", "_p", "_f", "_x" ) def __init__(self): """pcond command options.""" OptionCollection.__init__(self) self._h = BoolOption("h", "Human visual response - default: False") self._a = BoolOption("a", "Human visual acuity loss - default: False") self._v = BoolOption("v", "Veiling glare - default: False") self._s = BoolOption("s", "Human contrast sensitivity - default: False") self._c = BoolOption("c", "Color visibility loss - default: False") self._w = BoolOption("w", "Weighted average exposure - default: False") self._i = IntegerOption("i", "Importance of fixation points -default: 0") self._I = BoolOption("I", "Precomputed histogram - default: False") self._l = BoolOption("l", "Linear response function - default: False") self._e = StringOption("e", "Exposure adjustment") self._u = IntegerOption("u", "Top of Luminance - default: 100") self._d = NumericOption("d", "Dynamic range - default: 32") self._p = TupleOption("p", "RGB primaries", value=None, length=8, numtype=float) self._f = FileOption("f", "output file from macbethcal") self._x = FileOption("x", "Output display luminance to mapfile") self._on_setattr_check = True def _on_setattr(self): """This method executes after setting each new attribute. Use this method to add checks that are necessary for OptionCollection. For instance in pcond option collection -f and -p don't go together very well. You can include a check to ensure this is always correct. """ if self._f.is_set and self._p.is_set: raise ValueError( 'Both -f and -p do not go well together.' ' This program can use either of the options but not both.' ) @property def h(self): """Human visual response - default: False Mimic human visual response in the output. The goal of this process is to produce output that correlates strongly with a person's subjective impression of a scene. This switch is a bundle of the −a, −v, −s and −c options. """ return self._h @h.setter def h(self, value): self._h.value = value @property def a(self): """Human visual acuity loss - default: False Defocus darker regions of the image to simulate human visual acuity loss. This option will not affect well-lit scenes. """ return self._a @a.setter def a(self, value): self._a.value = value @property def v(self): """Veiling glare - default: False Add veiling glare due to very bright regions in the image. This simulates internal scattering in the human eye, which results in a loss of visible contrast near bright sources. """ return self._v @v.setter def v(self, value): self._v.value = value @property def s(self): """Human contrast sensitivity - default: False Use the human contrast sensitivity function in determining the exposure for the image. A darker scene will have relatively lower exposure with lower contrast than a well-lit scene. """ return self._s @s.setter def s(self, value): self._s.value = value @property def c(self): """Color visibility loss - default: False If parts of the image are in the mesopic or scotopic range where the cone photoreceptors lose their efficiency, this switch will cause a corresponding loss of color visibility in the output and a shift to a scotopic (blue-dominant) response function. """ return self._c @c.setter def c(self, value): self._c.value = value @property def w(self): """Weighted average exposure - default: False Use a center-weighted average for the exposure rather than the default uniform average. This may improve the exposure for scenes with high or low peripheral brightness. """ return self._w @w.setter def w(self, value): self._w.value = value @property def i(self): """Importance of fixation points -default: 0 Set the relative importance of fixation points to a value, which is a value between 0 and 1. If fixfrac is zero (the default), then no fixation points are used in determining the local or global adaptation. If the value is greater than zero, then a list of fixation points is read from the standard input. These points are given as tab-separated (x,y) picture coordinates, such as those produced by the −op option of ximage(1). The foveal samples about these fixation points will then be weighted together with the global averaging scheme such that the fixations receive the value of the total weight. If the value is one, then only the fixation points are considered for adaptation. """ return self._i @i.setter def i(self, value): self._i.value = value @property def I(self): """Precomputed histogram - default: False Rather than computing a histogram of foveal samples from the source picture, use the precomputed histogram provided on the standard input. This data should be given in pairs of the base-10 logarithm of world luminance and a count for each bin in ascending order, as computed by the phisto(1) script. This option is useful for producing identical exposures of multiple pictures (as in an animation), and provides greater control over the histogram computation. """ return self._I @I.setter def I(self, value): self._I.value = value @property def l(self): """Linear response function - default: False Use a linear response function rather than the standard dynamic range compression algorithm. This will prevent the loss of usable physical values in the output picture, although some parts of the resulting image may be too dark or too bright to see. """ return self._l @l.setter def l(self, value): self._l.value = value @property def e(self): """Exposure adjustment Set the exposure adjustment for the picture to a value. This may either be a real multiplier, or a (fractional) number of f-stops preceeded by a + or -. This option implies a linear response (see the −l option above). """ return self._e @e.setter def e(self, value): self._e.value = value @property def u(self): """Top of Luminance - default: 100 Specifies the top of the luminance range for the target output device. That is, the luminance (in candelas/m^2) for an output pixel value of (R,G,B)=(1,1,1). The default value is 100 cd/m^2. """ return self._u @u.setter def u(self, value): self._u.value = value @property def d(self): """Dynamic range - default: 32 Specifies the dynamic range for the target output device, which is the ratio of the maximum and minimum usable display luminances. The default value is 32. """ return self._d @d.setter def d(self, value): self._d.value = value @property def p(self): """RGB primaries Specifies the RGB primaries for the target output device. These are the 1931 CIE (x,y) chromaticity values for red, green, blue and white, respectively in the format of (xr yr xg yg xb yb xw yw). """ return self._p @p.setter def p(self, value): self._p.value = value @property def f(self): """output file from macbethcal Use the given output file from macbethcal(1) to precorrect the color and contrast for the target output device. This does a more thorough job than a simple primary correction using the −p option. Only one of −f or −p may be given. """ return self._f @f.setter def f(self, value): self._f.value = value @property def x(self): """Output display luminance to mapfile Put out the final mapping from world luminance to display luminance to mapfile. This file will contain values from the minimum usable world luminance to the maximum (in candelas/m^2) in one column, and their corresponding display luminance values (also in candelas/m^2) in the second column. This file may be used for debugging purposes, or to plot the mapping function created by pcond. """ return self._x @x.setter def x(self, value): self._x.value = value