Source code for honeybee_energy.load.equipment

# coding=utf-8
"""Complete definition of equipment in a simulation, including schedule and load."""
from __future__ import division

from honeybee._lockable import lockable
from honeybee.typing import float_in_range, float_positive, clean_and_id_ep_string

from ._base import _LoadBase
from ..schedule.ruleset import ScheduleRuleset
from ..schedule.fixedinterval import ScheduleFixedInterval
from ..reader import parse_idf_string
from ..writer import generate_idf_string
from ..properties.extension import ElectricEquipmentProperties, GasEquipmentProperties


@lockable
class _EquipmentBase(_LoadBase):
    """A complete definition of equipment, including schedules and load.

    Args:
        identifier: Text string for a unique Equipment ID. Must be < 100 characters
            and not contain any EnergyPlus special characters. This will be used to
            identify the object across a model and in the exported IDF.
        watts_per_area: A numerical value for the equipment power density in
            Watts per square meter of floor area.
        schedule: A ScheduleRuleset or ScheduleFixedInterval for the use of equipment
            over the course of the year. The type of this schedule should be
            Fractional and the fractional values will get multiplied by the
            watts_per_area to yield a complete equipment profile.
        radiant_fraction: A number between 0 and 1 for the fraction of the total
            equipment load given off as long wave radiant heat. (Default: 0).
        latent_fraction: A number between 0 and 1 for the fraction of the total
            equipment load that is latent (as opposed to sensible). (Default: 0).
        lost_fraction: A number between 0 and 1 for the fraction of the total
            equipment load that is lost outside of the zone and the HVAC system.
            Typically, this is used to represent heat that is exhausted directly
            out of a zone (as you would for a stove). (Default: 0).

    Properties:
        * identifier
        * display_name
        * watts_per_area
        * schedule
        * radiant_fraction
        * latent_fraction
        * lost_fraction
        * convected_fraction
        * user_data
    """
    __slots__ = ('_watts_per_area', '_schedule', '_radiant_fraction',
                 '_latent_fraction', '_lost_fraction')
    _idf_comments = ('name', 'zone name', 'schedule name', 'equipment level method',
                     'equipment power level {W}', 'equipment per floor area {W/m2}',
                     'equipment per person {W/ppl}', 'latent fraction',
                     'radiant fraction', 'lost fraction')

    def __init__(self, identifier, watts_per_area, schedule, radiant_fraction=0,
                 latent_fraction=0, lost_fraction=0):
        """Initialize Equipment."""
        _LoadBase.__init__(self, identifier)
        self._latent_fraction = 0  # starting value so that check runs correctly
        self._lost_fraction = 0  # starting value so that check runs correctly

        self.watts_per_area = watts_per_area
        self.schedule = schedule
        self.radiant_fraction = radiant_fraction
        self.latent_fraction = latent_fraction
        self.lost_fraction = lost_fraction

    @property
    def watts_per_area(self):
        """Get or set the equipment power density in Watts/square meter of floor area."""
        return self._watts_per_area

    @watts_per_area.setter
    def watts_per_area(self, value):
        self._watts_per_area = float_positive(value, 'equipment watts per area')

    @property
    def schedule(self):
        """Get or set a ScheduleRuleset or ScheduleFixedInterval for equipment usage."""
        return self._schedule

    @schedule.setter
    def schedule(self, value):
        assert isinstance(value, (ScheduleRuleset, ScheduleFixedInterval)), \
            'Expected ScheduleRuleset or ScheduleFixedInterval for equipment ' \
            'schedule. Got {}.'.format(type(value))
        self._check_fractional_schedule_type(value, 'Equipment')
        value.lock()   # lock editing in case schedule has multiple references
        self._schedule = value

    @property
    def radiant_fraction(self):
        """Get or set the fraction of equipment heat given off as long wave radiation."""
        return self._radiant_fraction

    @radiant_fraction.setter
    def radiant_fraction(self, value):
        self._radiant_fraction = float_in_range(
            value, 0.0, 1.0, 'equipment radiant fraction')
        self._check_fractions()

    @property
    def latent_fraction(self):
        """Get or set the fraction of equipment heat that is latent."""
        return self._latent_fraction

    @latent_fraction.setter
    def latent_fraction(self, value):
        self._latent_fraction = float_in_range(
            value, 0.0, 1.0, 'equipment latent fraction')
        self._check_fractions()

    @property
    def lost_fraction(self):
        """Get or set the fraction of equipment heat that is lost out of the zone."""
        return self._lost_fraction

    @lost_fraction.setter
    def lost_fraction(self, value):
        self._lost_fraction = float_in_range(
            value, 0.0, 1.0, 'equipment lost fraction')
        self._check_fractions()

    @property
    def convected_fraction(self):
        """Get the fraction of equipment heat that convects to the zone air."""
        return 1 - sum((self._radiant_fraction, self._latent_fraction,
                        self._lost_fraction))

    def diversify(self, count, watts_stdev=20, schedule_offset=1, timestep=1,
                  schedule_indices=None):
        """Get an array of diversified Equipment derived from this "average" one.

        Approximately 2/3 of the schedules in the output objects will be offset
        from the mean by the input schedule_offset (1/3 ahead and another 1/3 behind).

        Args:
            count: An positive integer for the number of diversified objects to
                generate from this mean object.
            watts_stdev: A number between 0 and 100 for the percent of the watts_per_area
                representing one standard deviation of diversification from
                the mean. (Default 20 percent).
            schedule_offset: A positive integer for the number of timesteps at which
                the lighting schedule of the resulting objects will be shifted - roughly
                1/3 of the objects ahead and another 1/3 behind. (Default: 1).
            timestep: An integer for the number of timesteps per hour at which the
                shifting is occurring. This must be a value between 1 and 60, which
                is evenly divisible by 60. 1 indicates that each step is an hour
                while 60 indicates that each step is a minute. (Default: 1).
            schedule_indices: An optional list of integers from 0 to 2 with a length
                equal to the input count, which will be used to set whether a given
                schedule is behind (0), ahead (2), or the same (1). This can be
                used to coordinate schedules across diversified programs. If None
                a random list of integers will be genrated. (Default: None).
        """
        # generate shifted schedules and a gaussian distribution of watts_per_area
        usage_schs = self._shift_schedule(self.schedule, schedule_offset, timestep)
        stdev = self.watts_per_area * (watts_stdev / 100)
        new_loads, sch_ints = self._gaussian_values(count, self.watts_per_area, stdev)
        sch_ints = sch_ints if schedule_indices is None else schedule_indices

        # generate the new objects and return them
        new_objects = []
        for load_val, sch_int in zip(new_loads, sch_ints):
            new_obj = self.duplicate()
            new_obj.identifier = clean_and_id_ep_string(self.identifier)
            new_obj.watts_per_area = load_val
            new_obj.schedule = usage_schs[sch_int]
            new_objects.append(new_obj)
        return new_objects

    def _check_fractions(self):
        tot = (self._radiant_fraction, self._latent_fraction, self._lost_fraction)
        assert sum(tot) <= 1 + 1e-9, 'Sum of equipment radiant_fraction, ' \
            'latent_fraction and lost_fraction ({}) is greater than 1.'.format(sum(tot))

    def _get_idf_values(self, zone_identifier):
        """Get the properties of this object ordered as they are in an IDF."""
        return ('{}..{}'.format(self.identifier, zone_identifier), zone_identifier,
                self.schedule.identifier, 'Watts/Area', '', self.watts_per_area, '',
                self.latent_fraction, self.radiant_fraction, self.lost_fraction)

    def _add_dict_keys(self, base, abridged):
        """Add keys to a base dictionary."""
        base['identifier'] = self.identifier
        base['watts_per_area'] = self.watts_per_area
        base['radiant_fraction'] = self.radiant_fraction
        base['latent_fraction'] = self.latent_fraction
        base['lost_fraction'] = self.lost_fraction
        base['schedule'] = self.schedule.to_dict() if not \
            abridged else self.schedule.identifier
        if self._display_name is not None:
            base['display_name'] = self.display_name
        if self._user_data is not None:
            base['user_data'] = self.user_data
        prop_dict = self.properties.to_dict()
        if prop_dict is not None:
            base['properties'] = prop_dict
        return base

    @staticmethod
    def _extract_ep_properties(ep_strs, schedule_dict):
        """Extract relevant EnergyPlus properties from a list of strings."""
        # check the inputs
        if len(ep_strs) > 3:
            assert ep_strs[3].lower() == 'watts/area', 'Equipment must use ' \
                'Watts/Area method to be loaded from IDF to honeybee.'
        else:
            raise AssertionError('Equipment must use Watts/Area method to be loaded '
                                 'from IDF to honeybee.')
        # extract the properties from the string
        rad_fract = 0
        lat_fract = 0
        lost_fract = 0
        try:
            lat_fract = ep_strs[7] if ep_strs[7] != '' else 0
            rad_fract = ep_strs[8] if ep_strs[8] != '' else 0
            lost_fract = ep_strs[9] if ep_strs[9] != '' else 0
        except IndexError:
            pass  # shorter equipment definition lacking fractions
        # extract the schedules from the string
        try:
            sched = schedule_dict[ep_strs[2]]
        except KeyError as e:
            raise ValueError('Failed to find {} in the schedule_dict.'.format(e))
        return sched, rad_fract, lat_fract, lost_fract

    @staticmethod
    def _extract_dict_props(data, expected_type):
        """Extract relevant properties from an equipment dictionary."""
        assert data['type'] == expected_type, \
            'Expected {} dictionary. Got {}.'.format(expected_type, data['type'])
        sched = _EquipmentBase._get_schedule_from_dict(data['schedule'])
        rad_fract, lat_fract, lost_fract = _EquipmentBase._optional_dict_keys(data)
        return sched, rad_fract, lat_fract, lost_fract

    @staticmethod
    def _extract_abridged_dict_props(data, expected_type, schedule_dict):
        """Extract relevant properties from an equipment dictionary."""
        assert data['type'] == expected_type, \
            'Expected {} dictionary. Got {}.'.format(expected_type, data['type'])
        try:
            sched = schedule_dict[data['schedule']]
        except KeyError as e:
            raise ValueError('Failed to find {} in the schedule_dict.'.format(e))
        rad_fract, lat_fract, lost_fract = _EquipmentBase._optional_dict_keys(data)
        return sched, rad_fract, lat_fract, lost_fract

    @staticmethod
    def _optional_dict_keys(data):
        """Get the optional keys from an Equipment dictionary."""
        rad_fract = data['radiant_fraction'] if 'radiant_fraction' in data else 0
        lat_fract = data['latent_fraction'] if 'latent_fraction' in data else 0
        lost_fract = data['lost_fraction'] if 'lost_fraction' in data else 0
        return rad_fract, lat_fract, lost_fract

    @staticmethod
    def _average_properties(identifier, equipments, weights, timestep_resolution):
        """Get average properties across several equipment objects."""
        weights, u_weights = \
            _EquipmentBase._check_avg_weights(equipments, weights, 'Equipment')

        # calculate the average values
        pd = sum([eq.watts_per_area * w for eq, w in zip(equipments, weights)])
        rad_fract = sum([eq.radiant_fraction * w for eq, w in zip(equipments, u_weights)])
        lat_fract = sum([eq.latent_fraction * w for eq, w in zip(equipments, u_weights)])
        lost_fract = sum([eq.lost_fraction * w for eq, w in zip(equipments, u_weights)])

        # calculate the average schedules
        sched = _EquipmentBase._average_schedule(
            '{} Schedule'.format(identifier), [eq.schedule for eq in equipments],
            u_weights, timestep_resolution)

        return pd, sched, rad_fract, lat_fract, lost_fract

    def __key(self):
        """A tuple based on the object properties, useful for hashing."""
        return (self.identifier, self.watts_per_area, hash(self.schedule),
                self.radiant_fraction, self.latent_fraction, self.lost_fraction)

    def __hash__(self):
        return hash(self.__key())

    def __eq__(self, other):
        return isinstance(other, _EquipmentBase) and self.__key() == other.__key()

    def __ne__(self, other):
        return not self.__eq__(other)

    def __copy__(self):
        new_obj = _EquipmentBase(
            self.identifier, self.watts_per_area, self.schedule,
            self.radiant_fraction, self.latent_fraction, self.lost_fraction)
        new_obj._display_name = self._display_name
        new_obj._user_data = None if self._user_data is None else self._user_data.copy()
        return new_obj

    def __repr__(self):
        return '{}: {} [{} W/m2] [schedule: {}]'.format(
            self.__class__.__name__, self.display_name, round(self.watts_per_area, 1),
            self.schedule.display_name)


[docs]@lockable class ElectricEquipment(_EquipmentBase): """A complete definition of electric equipment, including schedules and load. Args: identifier: Text string for a unique ElectricEquipment ID. Must be < 100 characters and not contain any EnergyPlus special characters. This will be used to identify the object across a model and in the exported IDF. watts_per_area: A numerical value for the equipment power density in Watts per square meter of floor area. schedule: A ScheduleRuleset or ScheduleFixedInterval for the use of equipment over the course of the year. The type of this schedule should be Fractional and the fractional values will get multiplied by the watts_per_area to yield a complete equipment profile. radiant_fraction: A number between 0 and 1 for the fraction of the total equipment load given off as long wave radiant heat. (Default: 0). latent_fraction: A number between 0 and 1 for the fraction of the total equipment load that is latent (as opposed to sensible). (Default: 0). lost_fraction: A number between 0 and 1 for the fraction of the total equipment load that is lost outside of the zone and the HVAC system. Typically, this is used to represent heat that is exhausted directly out of a zone (as you would for a stove). (Default: 0). Properties: * identifier * display_name * watts_per_area * schedule * radiant_fraction * latent_fraction * lost_fraction * convected_fraction * user_data """ __slots__ = () def __init__(self, identifier, watts_per_area, schedule, radiant_fraction=0, latent_fraction=0, lost_fraction=0): """Initialize Electric Equipment.""" _EquipmentBase.__init__(self, identifier, watts_per_area, schedule, radiant_fraction, latent_fraction, lost_fraction) self._properties = ElectricEquipmentProperties(self)
[docs] @classmethod def from_idf(cls, idf_string, schedule_dict): """Create an ElectricEquipment object from an EnergyPlus IDF text string. Note that the ElectricEquipment idf_string must use the 'watts per zone floor area' method in order to be successfully imported. Args: idf_string: A text string fully describing an EnergyPlus ElectricEquipment definition. schedule_dict: A dictionary with schedule identifiers as keys and honeybee schedule objects as values (either ScheduleRuleset or ScheduleFixedInterval). These will be used to assign the schedules to the ElectricEquipment object. Returns: A tuple with two elements - equipment: An ElectricEquipment object loaded from the idf_string. - zone_identifier: The identifier of the zone to which the ElectricEquipment object should be assigned. """ # check the inputs ep_strs = parse_idf_string(idf_string, 'ElectricEquipment,') # get the relevant properties sched, rad_f, lat_f, lost_f = cls._extract_ep_properties(ep_strs, schedule_dict) # return the equipment object and the zone identifier for the equip object obj_id = ep_strs[0].split('..')[0] zone_id = ep_strs[1] equipment = cls(obj_id, ep_strs[5], sched, rad_f, lat_f, lost_f) return equipment, zone_id
[docs] @classmethod def from_dict(cls, data): """Create a ElectricEquipment object from a dictionary. Note that the dictionary must be a non-abridged version for this classmethod to work. Args: data: A ElectricEquipment dictionary in following the format below. .. code-block:: python { "type": 'ElectricEquipment', "identifier": 'Open_Office_Equipment_50_03', "display_name": 'Office Equipment', "watts_per_area": 5, # equipment watts per square meter of floor area "schedule": {}, # ScheduleRuleset/ScheduleFixedInterval dictionary "radiant_fraction": 0.3, # fraction of heat that is long wave radiant "latent_fraction": 0, # fraction of heat that is latent "lost_fraction": 0 # fraction of heat that is lost } """ sched, rad_f, lat_f, lost_f = cls._extract_dict_props(data, 'ElectricEquipment') new_obj = cls(data['identifier'], data['watts_per_area'], sched, rad_f, lat_f, lost_f) if 'display_name' in data and data['display_name'] is not None: new_obj.display_name = data['display_name'] if 'user_data' in data and data['user_data'] is not None: new_obj.user_data = data['user_data'] if 'properties' in data and data['properties'] is not None: new_obj.properties._load_extension_attr_from_dict(data['properties']) return new_obj
[docs] @classmethod def from_dict_abridged(cls, data, schedule_dict): """Create a ElectricEquipment object from an abridged dictionary. Args: data: A ElectricEquipmentAbridged dictionary in following the format below. schedule_dict: A dictionary with schedule identifiers as keys and honeybee schedule objects as values (either ScheduleRuleset or ScheduleFixedInterval). These will be used to assign the schedules to the equipment object. .. code-block:: python { "type": 'ElectricEquipmentAbridged', "identifier": 'Open_Office_Equipment_50_03', "display_name": 'Office Equipment', "watts_per_area": 5, # equipment watts per square meter of floor area "schedule": "Office Equipment Schedule", # Schedule identifier "radiant_fraction": 0.3, # fraction of heat that is long wave radiant "latent_fraction": 0, # fraction of heat that is latent "lost_fraction": 0 # fraction of heat that is lost } """ sched, rad_f, lat_f, lost_f = cls._extract_abridged_dict_props( data, 'ElectricEquipmentAbridged', schedule_dict) new_obj = cls(data['identifier'], data['watts_per_area'], sched, rad_f, lat_f, lost_f) if 'display_name' in data and data['display_name'] is not None: new_obj.display_name = data['display_name'] if 'user_data' in data and data['user_data'] is not None: new_obj.user_data = data['user_data'] if 'properties' in data and data['properties'] is not None: new_obj.properties._load_extension_attr_from_dict(data['properties']) return new_obj
[docs] def to_idf(self, zone_identifier): """IDF string representation of ElectricEquipment object. Note that this method only outputs a single string for the ElectricEquipment object and, to write everything needed to describe the object into an IDF, this object's schedule must also be written. Args: zone_identifier: Text for the zone identifier that the ElectricEquipment object is assigned to. """ return generate_idf_string( 'ElectricEquipment', self._get_idf_values(zone_identifier), self._idf_comments)
[docs] def to_dict(self, abridged=False): """ElectricEquipment dictionary representation. Args: abridged: Boolean to note whether the full dictionary describing the object should be returned (False) or just an abridged version (True), which only specifies the identifiers of schedules. Default: False. """ base = {'type': 'ElectricEquipment'} if not abridged else \ {'type': 'ElectricEquipmentAbridged'} return self._add_dict_keys(base, abridged)
[docs] @staticmethod def average(identifier, equipments, weights=None, timestep_resolution=1): """Get an ElectricEquipment object that's an average between other objects. Args: identifier: Text string for a unique ID for the new averaged ElectricEquipment. Must be < 100 characters and not contain any EnergyPlus special characters. This will be used to identify the object across a model and in the exported IDF. equipments: A list of ElectricEquipment objects that will be averaged together to make a new ElectricEquipment. weights: An optional list of fractional numbers with the same length as the input equipments. These will be used to weight each of the equipment objects in the resulting average. Note that these weights can sum to less than 1 in which case the average watts_per_area will assume 0 for the unaccounted fraction of the weights. If None, the objects will be weighted equally. Default: None. timestep_resolution: An optional integer for the timestep resolution at which the schedules will be averaged. Any schedule details smaller than this timestep will be lost in the averaging process. Default: 1. """ pd, sched, rad_f, lat_f, lost_f = ElectricEquipment._average_properties( identifier, equipments, weights, timestep_resolution) return ElectricEquipment(identifier, pd, sched, rad_f, lat_f, lost_f)
def __key(self): """A tuple based on the object properties, useful for hashing.""" return (self.identifier, self.watts_per_area, hash(self.schedule), self.radiant_fraction, self.latent_fraction, self.lost_fraction) def __hash__(self): return hash(self.__key()) def __eq__(self, other): return isinstance(other, ElectricEquipment) and self.__key() == other.__key() def __copy__(self): new_obj = ElectricEquipment( self.identifier, self.watts_per_area, self.schedule, self.radiant_fraction, self.latent_fraction, self.lost_fraction) new_obj._display_name = self._display_name new_obj._user_data = None if self._user_data is None else self._user_data.copy() new_obj._properties._duplicate_extension_attr(self._properties) return new_obj
[docs]@lockable class GasEquipment(_EquipmentBase): """A complete definition of gas equipment, including schedules and load. Args: identifier: Text string for a unique GasEquipment ID. Must be < 100 characters and not contain any EnergyPlus special characters. This will be used to identify the object across a model and in the exported IDF. watts_per_area: A numerical value for the equipment power density in Watts per square meter of floor area. schedule: A ScheduleRuleset or ScheduleFixedInterval for the use of equipment over the course of the year. The type of this schedule should be Fractional and the fractional values will get multiplied by the watts_per_area to yield a complete equipment profile. radiant_fraction: A number between 0 and 1 for the fraction of the total equipment load given off as long wave radiant heat. (Default: 0). latent_fraction: A number between 0 and 1 for the fraction of the total equipment load that is latent (as opposed to sensible). (Default: 0). lost_fraction: A number between 0 and 1 for the fraction of the total equipment load that is lost outside of the zone and the HVAC system. Typically, this is used to represent heat that is exhausted directly out of a zone (as you would for a stove). (Default: 0). Properties: * identifier * display_name * watts_per_area * schedule * radiant_fraction * latent_fraction * lost_fraction * convected_fraction * user_data """ __slots__ = () def __init__(self, identifier, watts_per_area, schedule, radiant_fraction=0, latent_fraction=0, lost_fraction=0): """Initialize Gas Equipment.""" _EquipmentBase.__init__(self, identifier, watts_per_area, schedule, radiant_fraction, latent_fraction, lost_fraction) self._properties = GasEquipmentProperties(self)
[docs] @classmethod def from_idf(cls, idf_string, schedule_dict): """Create an GasEquipment object from an EnergyPlus IDF text string. Note that the GasEquipment idf_string must use the 'watts per zone floor area' method in order to be successfully imported. Args: idf_string: A text string fully describing an EnergyPlus GasEquipment definition. schedule_dict: A dictionary with schedule identifiers as keys and honeybee schedule objects as values (either ScheduleRuleset or ScheduleFixedInterval). These will be used to assign the schedules to the GasEquipment object. Returns: A tuple with two elements - equipment: An GasEquipment object loaded from the idf_string. - zone_identifier: The identifier of the zone to which the GasEquipment object should be assigned. """ # check the inputs ep_strs = parse_idf_string(idf_string, 'GasEquipment,') # get the relevant properties sched, rad_f, lat_f, lost_f = cls._extract_ep_properties(ep_strs, schedule_dict) # return the equipment object and the zone identifier for the equip object obj_id = ep_strs[0].split('..')[0] zone_id = ep_strs[1] equipment = cls(obj_id, ep_strs[5], sched, rad_f, lat_f, lost_f) return equipment, zone_id
[docs] @classmethod def from_dict(cls, data): """Create a GasEquipment object from a dictionary. Note that the dictionary must be a non-abridged version for this classmethod to work. Args: data: A GasEquipment dictionary in following the format below. .. code-block:: python { "type": 'GasEquipment', "identifier": 'Kitchen_Equipment_200_03_02_0', "display_name": 'Kitchen Equipment', "watts_per_area": 20, # equipment watts per square meter of floor area "schedule": {}, # ScheduleRuleset/ScheduleFixedInterval dictionary "radiant_fraction": 0.3, # fraction of heat that is long wave radiant "latent_fraction": 0.2, # fraction of heat that is latent "lost_fraction": 0 # fraction of heat that is lost } """ sched, rad_f, lat_f, lost_f = cls._extract_dict_props(data, 'GasEquipment') new_obj = cls(data['identifier'], data['watts_per_area'], sched, rad_f, lat_f, lost_f) if 'display_name' in data and data['display_name'] is not None: new_obj.display_name = data['display_name'] if 'user_data' in data and data['user_data'] is not None: new_obj.user_data = data['user_data'] if 'properties' in data and data['properties'] is not None: new_obj.properties._load_extension_attr_from_dict(data['properties']) return new_obj
[docs] @classmethod def from_dict_abridged(cls, data, schedule_dict): """Create a GasEquipment object from an abridged dictionary. Args: data: A GasEquipmentAbridged dictionary in following the format below. schedule_dict: A dictionary with schedule identifiers as keys and honeybee schedule objects as values (either ScheduleRuleset or ScheduleFixedInterval). These will be used to assign the schedules to the equipment object. .. code-block:: python { "type": 'GasEquipmentAbridged', "identifier": 'Kitchen_Equipment_200_03_02_0', "display_name": 'Kitchen Equipment', "watts_per_area": 20, # equipment watts per square meter of floor area "schedule": "Kitchen Equipment Schedule", # Schedule identifier "radiant_fraction": 0.3, # fraction of heat that is long wave radiant "latent_fraction": 0, fraction of heat that is latent "lost_fraction": 0 fraction of heat that is lost } """ sched, rad_f, lat_f, lost_f = cls._extract_abridged_dict_props( data, 'GasEquipmentAbridged', schedule_dict) new_obj = cls(data['identifier'], data['watts_per_area'], sched, rad_f, lat_f, lost_f) if 'display_name' in data and data['display_name'] is not None: new_obj.display_name = data['display_name'] if 'user_data' in data and data['user_data'] is not None: new_obj.user_data = data['user_data'] if 'properties' in data and data['properties'] is not None: new_obj.properties._load_extension_attr_from_dict(data['properties']) return new_obj
[docs] def to_idf(self, zone_identifier): """IDF string representation of GasEquipment object. Note that this method only outputs a single string for the GasEquipment object and, to write everything needed to describe the object into an IDF, this object's schedule must also be written. Args: zone_identifier: Text for the zone identifier that the GasEquipment object is assigned to. """ return generate_idf_string('GasEquipment', self._get_idf_values(zone_identifier), self._idf_comments)
[docs] def to_dict(self, abridged=False): """GasEquipment dictionary representation. Args: abridged: Boolean to note whether the full dictionary describing the object should be returned (False) or just an abridged version (True), which only specifies the identifiers of schedules. Default: False. """ base = {'type': 'GasEquipment'} if not abridged else \ {'type': 'GasEquipmentAbridged'} return self._add_dict_keys(base, abridged)
[docs] @staticmethod def average(identifier, equipments, weights=None, timestep_resolution=1): """Get a GasEquipment object that's an average between other objects. Args: identifier: Text string for a unique ID for the new averaged GasEquipment. Must be < 100 characters and not contain any EnergyPlus special characters. This will be used to identify the object across a model and in the exported IDF. equipments: A list of GasEquipment objects that will be averaged together to make a new GasEquipment. weights: An optional list of fractional numbers with the same length as the input equipments. These will be used to weight each of the equipment objects in the resulting average. Note that these weights can sum to less than 1 in which case the average watts_per_area will assume 0 for the unaccounted fraction of the weights. If None, the objects will be weighted equally. Default: None. timestep_resolution: An optional integer for the timestep resolution at which the schedules will be averaged. Any schedule details smaller than this timestep will be lost in the averaging process. Default: 1. """ pd, sched, rad_f, lat_f, lost_f = GasEquipment._average_properties( identifier, equipments, weights, timestep_resolution) return GasEquipment(identifier, pd, sched, rad_f, lat_f, lost_f)
def __key(self): """A tuple based on the object properties, useful for hashing.""" return (self.identifier, self.watts_per_area, hash(self.schedule), self.radiant_fraction, self.latent_fraction, self.lost_fraction) def __hash__(self): return hash(self.__key()) def __eq__(self, other): return isinstance(other, GasEquipment) and self.__key() == other.__key() def __copy__(self): new_obj = GasEquipment( self.identifier, self.watts_per_area, self.schedule, self.radiant_fraction, self.latent_fraction, self.lost_fraction) new_obj._display_name = self._display_name new_obj._user_data = None if self._user_data is None else self._user_data.copy() new_obj._properties._duplicate_extension_attr(self._properties) return new_obj